کاربرد شبکه‌ عصبی موجک در تخمین دمای متوسط هوا شهرستان ساری

نویسندگان

چکیده مقاله:

دمای هوا که در ایستگاه‌های هواشناسی استاندارد اندازه‌گیری می‌شود یکی از توصیف‌کننده‌های اصلی وضعیت محیط زمین است. بنابراین برآورد و تخمین دقیق دمای متوسط روزانه در هر منطقه یکی از پیش­نیازهای مهم برای برنامه‌ریزی کشاورزی و نیز مدیریت منابع آب می‌باشد که به روش‌های مختلفی همچون مدل‌های تجربی، نیمه تجربی و هوشمند قابل انجام است. در این پژوهش کاربرد شبکه عصبی موجک به منظور برآورد متوسط دمای روزانه هوا در ایستگاه ساری مورد بررسی و ارزیابی قرار گرفته و کارایی آن  با مدل شبکه عصبی مصنوعی مقایسه گردید. جهت مدل‌سازی از داده‌های دمانگار ایستگاه هواشناسی ساری واقع در استان مازندران استفاده شد. پارامتر رطوبت نسبی، دمای بیشینه، دمای کمینه، سرعت باد و تبخیر در مقیاس زمانی روزانه در طی سال آبی (1382-1392) بعنوان ورودی شبکه و دمای متوسط روزانه هوا به عنوان خروجی شبکه انتخاب گردید. معیارهای ضریب همبستگی، ریشه میانگین مربعات خطا و ضریب نش ساتکلیف برای ارزیابی و مقایسه عملکرد مدل‌ها مورداستفاده قرار گرفت. مقایسه نتایج نشان داد مدل شبکه عصبی موجک عملکرد بهتری نسبت به مدل شبکه عصبی مصنوعی در مدل‌سازی دارد، بگونه ای که مدل شبکه عصبی موجک با بالاترین ضریب همبستگی (999/0)، ریشه میانگین مربعات خطا (001/0) و نیز بیشترین معیار نش ساتکلیف (998/0) در مرحله صحت سنجی در اولویت قرار گرفت. در مجموع نتایج نشان داد مدل شبکه عصبی موجک در تخمین بیشتر مقادیر دقت بالایی از خود نشان داده است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد مدل شبکه عصبی موجک در تخمین شاخص بارش استاندارد

خشکسالی یکی از پدیده‌های آب و هوایی است که در همه شرایط اقلیمی و در همه مناطق کره زمین به وقوع می‌پیوندد. پیش‌بینی خشکسالی نقش مهمی در طراحی و مدیریت منابع طبیعی، سیستم‌های منابع آب، تعیین نیاز آبی گیاه ایفا می‌نماید. بدین منظور در این پژوهش از داده‏های 4 ایستگاه باران‌سنجی نورآباد، بروجرد، الشتر و دورود واقع در استان لرستان، به بررسی خشکسالی با استفاده از شاخص بارش استاندارد SPI در مقیاس‏های ز...

متن کامل

بررسی عملکرد مدل شبکه عصبی موجک در تخمین دبی روزانه

سیل یکی از بلایای طبیعی مهمی است که همه‌ ساله باعث ایجاد خسارت‌های مالی و جانی فراوانی به جوامع </st...

متن کامل

کاربرد شبکه عصبی موجک در تخمین رسوبات معلق رودخانه‌ها، مطالعه موردی: رودخانه کشکان-لرستان

شبیه‌سازی و ارزیابی آورد رسوب رودخانه از جمله مسائل مهم در مدیریت منابع آب می‌باشد. اندازه‌گیری مقدار رسوب به روش‌های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده، گاهی از دقت کافی نیز برخوردار نیست. در این پژوهش برای تخمین رسوبات رودخانه کشکان واقع در استان لرستان، از شبکه عصبی موجک استفاده شد و نتایج آن با روش‌های مرسوم هوشمند همچون شبکه عصبی مصنوعی مقایسه شد. پارامتر دبی، دما، میزان مواد ج...

متن کامل

تخمین هدایت الکتریکی رودخانه ها با استفاده از شبکه عصبی موجک (مطالعه موردی: رودخانه کاکارضا)

     Electrical conductivity (EC) is an important factor in river engineering, especially studying of river water quality. In this study we studied and evaluated wavelet neural network to predict the electrical conductivity of the Kakareza river (in lorestan), and the results were compared with results of artificial neural network model. For this purpose, hydrogen carbonate, chloride, sulfate, ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1395  شماره 27

صفحات  75- 86

تاریخ انتشار 2017-12-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023